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Abstract. Person re-identification across disjoint cameras hascgttancreas-
ing interest in computer vision due to its wide potential laggions in visual
surveillance. In this paper, we propose a new regularizgeé&an metric learn-
ing (RBML) method for person re-identification. While nuroes metric learning
methods have been proposed for person re-identificatioscient years, most of
them suffer from the small sample size (SSS) problem beddese are not e-
nough training samples in most practical person re-ideatifin systems, so that
the within-class and between-class variations can be w#thated to learn the
distance metric. To address this, we propose a RBML methotbttel and regu-
late the eigen-spectrums of these two covariance matn@parametric manner,
so that discriminative information can be better explaitégperimental results
on three widely used datasets demonstrate the advantage pfoposed RBML
over the state-of-the-art person re-identification meshod
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Person re-identification aims to match and recognize peradm have been ob-
served over different disjoint cameras, and it has manympialeapplications such as
information retrieval and visual surveillance. Over thetpdecade, many person re-
identification methods have been proposed in the literamd they can be mainly
classified into two categories: feature-based [1,2] andahbdsed [3-5]. Feature-based
approach aims to extract robust and discriminative feattoeharacterize the appear-
ance of human body images [1, 2, 6-10], and model-based agptearns a classifier
or ranker to recognize the query body image.

Recent years have witnessed that metric learning has bezwfomost popular
methods in person re-identification [11-22] . Metric leagnaims to learn a Maha-
lanobis distance metric to transform samples from the walgépace to another fea-
ture space by exploiting the between-class and withinsclasiations. Representative
metric learning algorithms include large margin nearegghigor (LMNN) [23], infor-
mation theoretic metric learning (ITML) [24], and neighbood component analysis
(NCA) [25]. The objective of metric learning is to learn a disninative similarity
to better measure the similarity of human body images by ntpkise of some pri-
or knowledge. Fig. 1 illustrates an example to show the adggnof metric learning
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(a) Before metric learning. (b) After metric learning.

Fig. 1. Similarity distribution over 3160 positive and 3160 randgsampled negative pairs from
the VIPeR dataset. (a) The original distribution in the Eledn space. (b) The new distribu-
tion in the learned metric space. The histograms with thecodol and the blue color represent
the matched (same person) and mismatched (different persage pairs, respectively. Before
metric learning, the similarity of matched and mismatchauspoverlaps heavily, which is more
challenging for re-identification. However, these two $arity distribution histograms become
more separate in the learned distance metric, so that megerdinative information is exploited.

for person re-identification. While metric learning methdve shown promising per-
formance in person re-identification, most of them suffenfrthe small sample size
(SSS) problem because there are usually not enough trasaimgles to estimate the
within-class and between-class variations.

In this paper, we propose a new regularized Bayesian metaiming (RBML)
method for person re-identification. Our method models tifferénce of each pos-
itive pair and that of each negative pair as a Gaussian loliston model under the
Bayesian framework, and optimizes their probability rétidearn a discriminative dis-
tance metric. To better estimate the intra-class and oitess variations when there are
small number of training samples, we decompose the eigecismn of each covari-
ance matrix into two subspaces and regularize them in a mgar@rmanner. By doing
S0, the learned distance metric can extract more relevéorhiation. Our method is e-
valuated on three widely used person re-identificationsddseand experimental results
demonstrate the efficacy of the proposed method.

1 Related Work

Person Re-ldentification:Existing person re-identification methods can be categdriz
into two classes: feature-based and model-based. Feadisest methods extract visual
signatures to differentiate different persons. For examphrenzenat al. [1] devel-

oped a symmetry driven accumulation of local feature (SDAIdF body appearance
modeling. Junglinget al. [26] designed a codebook learning approach to cluster local
features for implicit body shape matching. Maal. [27] developed a BiCov descriptor
which combines biologically-inspired features and caaacke features for human body
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representation. Mat al. [28] used local descriptors from pixel intensities and efezb
them into higher-order Fisher vectors for feature repregiem. Grayet al. [9] select-
ed a subset of color and texture features for person bodgseptation. Schwart
al. [29] performed partial least squares (PLS) to adaptivelightedifferent local fea-
tures for body representation. Model-based methods leatassification or ranking
model to recognize the query body image from the galleryRepresentative methods
include support vector machine [30], transfer learning,[81anifold ranking [32] and
metric learning [5, 25, 33, 34]. In this work, we contributethe second category and
propose a hew metric learning approach for person re-ifieatton.

Metric Learning: Metric learning aims to learn a Mahalanobis distance médric
transform samples to another feature space by exploitmgéiween-class and within-
class variations. In recent years, metric learning has badely used in person re-
identification and has also achieved the state-of-theeafbpmance. For example, Hirz-
eret al. [35] proposed a relaxed pairwise metric leaning approacistikgeret al. [5]
learned a Mahalanobis distance metric based on the gtatistference over the ratio
of similar and similar pairs in the training set. Zhegi@l. [36] proposed a relative dis-
tance comparison (PRDC) metric learning to maximize thégabdity of a positive pair
having a smaller distance than a negative pair. Howevere thee still two shortcom-
ings among these methods: 1) most of them rely on a large nuohb@ining samples
and may not perform well when the training set is small; 2) hodshem perform an
iterative optimization procedure for training, which ireses the computational com-
plexity. To address this, we propose a simple yet effectiet¢rimlearning method for
person re-identification, where the difference of each gignositive and negative pairs
are represented as a Bayesian model, respectively, andttbef positive pairs over
negative pairs is minimized. Since the number of trainingas is usually small, we
regularize the covariance matrices in a parametric maomaake them well-estimated
and stable. By doing so, relevant information can be ex@chitbm the learned distance
metric.

2 Regularized Bayesian Metric Learning

Letz € R? be the feature representation of a body imagandD two sets of similar
and dissimilar pairs, wherer;,z;) € S is a feature pair from the same person and
(xi,2;) € D is a pair from different persons. We compute the followingpra

_ (Pr{(zs,x)) € D]
6(wi, 5) = log (WJ)ES]> v

wherePr[-] is a probability distribution function to measure the likelod of whether
(x;, ;) is from the same person. Specificallyz;, z;) is high if they are from different
persons, and low from the same person. We model the protyatisiribution function
as a single Gaussian distribution af{ = x; — «;) with zero mean as follows:

1

V2m | X

Pr[] = exp <—%x£2‘1xij> (2)
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Then, (1) can be simplified as follows by removing the log ap@rand the constant
term:

S(wi,xj) = 2 X7 iy +log(|1 X)) — ;5 iy — log(| o)

=z (X7 = T D 3)
where
Si= Y (wmi—a) (e —a)" 4)
(zi,x;)€S
So= > (wi—w)(wi—xy)" (5)
(zi,x;)€D

These two covariance matrices cannot be well estimateceiethre not enough
training samples. To address this, we regulate each of tiMmfirst obtain the eigen-
spectrum of each covariance matrix as follows:

X =oAPT (6)
whereA = diag(\, A2, -+, Aq) denotes the eigenvalues &f, which is sorted in a
descending order, arBl= [¢1, @2, - - - , 4] is the corresponding eigenvector.

The eigen-spectrum obtained with small number of trainengles is usually bi-
ased because the energy of the spectrum is concentrateevaipgificipal components
corresponding to the largest eigenvalues and those comdspy to smaller eigenval-
ues are unreliable. To better estimate the eigen-spectrtineiwhole space, we divide
the original eigen-spectrum of into two subspaces, called principal (P) and noise (N)
space and regulate each of them separately:

P t<
A € =¢ @)
N, c+l1<t<d

wherec is a pre-specified energy percentage parameter which iswechps follows:

c d
c:min{c|(2)\t/2/\t) >(} (8)
t=1 t=1

To better estimate the eigen-spectrum, we present a nevaregtion model which
reduces the effect of larger eigenvaluedirand enhances the effect of smaller eigen-
values inN as follows:

. ( a ) +Kfort<c
N, = t+b (9)

a4 forc+1<t<d
t+b

In (9), we regularize the whole eigen-spectrum in a paramatanner by using
the 1/f function because this function fits well to the decaying reanf the eigen-
spectrum [37, 38]. Since the eigenvaluesHnare much larger than those N, we
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Fig. 2. (@) The basic idea of our proposed RBML, where the eigentgpacof the covariance
matrix is decomposed into two subspaces and regularizéddifferent models. (b) Zooming in
of the original and modeled noise spaces.

further shrink and suppress them by using an exponentiaitifum using parameter
a, where) < a < 1. The parametef in (9) is used to make the eigen-spectrum
continuous in the whole space so that a smooth eigen-spectin be obtained in the

whole space, where
a a o
K = — 10
c+b (c + b) (10)

Let A, = 195 and). = ;5. The coefficients andb are computed as:

)\1)\0(0— 1)
=20 2 11
NN (11)
C/\c_/\l
b= ¢ = 12
N (12)

Having obtained the modeled eigen-spectrum, we computetiteled covariance
matrix as follows:

Y =N T (13)
whereA’ = diag(\}, A, - - - , X)) are the eigenvalues which are sorted in a decreasing
order. Now, the Mahalanobis distance metric in (3) can beprded as follows:

8(xij) = ai; (B — X5 Dy
= (25 — ;)" M(z; — ;) (14)

whereM £ ¥~! — ¥t

Fig. 2 show the estimated and original eigen-spectrum ofamvariance matrix,
and we see that effect of the eigenvalues in Mispace is enhanced in the modeled
spaceAlgorithm 1 summarizes the proposed RBML method.
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Input : Positive and negative training sample pairs and paraswetend(.
Output: Mahalanobis distance metrié.
Step 1 (Initialization):

1.1 Compute covariance matrices for similar and dissimilarspaespectively.
Step 2 (Regularization and Modeling):

For each covariance matrix, repeat

2.1 Perform eigendecomposition using (6).

2.2 Compute for parametricusing (8).

2.3 Estimate the new eigenspectrum using (9).

2.4. Compute the new covariance using (13).
Step 3 (Output):

Output the matrixM using (14).

Algorithm 1: RBML

3 Experiments

We evaluate the proposed RBML method on three widely usesbpeae-identification
datasets, namely the VIPeR [39], ETHZ [40] and i-LIDS [4 ljatmses. The following
describe the details of our experiments and results.

3.1 Settings

For each person image, we extracted a mixture of color andreahistogram fea-
tures by following the detailed settings in [3,9]. Each pergmage is represented by
a 2784-dimensional feature vector. Specifically, we diditiee person image into six
horizontal stripes. For each stripe, the RGB, YCbCr, HS\bcéatures and texture
features (Schmid and Gabor) were extracted and represastachistogram feature.
We applied PCA to project the feature representation int@@dimensional feature
vector to remove the redundancy of the high-dimensionalifespace.

Having extracted the feature of each image, we learned aidisative distance
metric by using the proposed RBML method. Finally, the nsaneighbor is used for
ranking.

3.2 Evaluation on the VIPeR dataset

The VIPeR dataset [39] consists of 632 persons and eachrpkeasotwo images cap-
tured from two different cameras in an outdoor environm®tast image pairs in this
dataset have a viewpoint change of 90 degrees, where oranislhie front/back view

and the other is from the side view. There are large variatidillumination, viewpoint

and pose in these captured images. Fig. 3 shows some sanggedrnn the VIPeR
dataset.

We followed the experimental settings in [3, 9]. In our eXxpents, we randomly
selectedp persons for training and the remaining persons were useteé$ting. We
repeated this selection 10 times and took the average as#iedtidentification accu-
racy. In the training phase, two images from the same pexmon & positive pair, and
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Fig. 3. Sample images of the VIPeR dataset. The images from eachnddue body images
captured from different cameras and belong to the samemerso

Table 1. Matching rates (%) of different metric learning methods loa VIPeR dataset.

Method p =316 p =100
Rank 1|10|25|50 1|10|25|50
RBML 27.2272.7889.0895.89(13.0647.4664.9479.70

KISSME [5] 22.1566.7182.91192.41| 1.41| 7.14|12.7§21.24
RS-KISSME [4]22.3167.4186.23 94.62/10.7140.9859.3(376.79
Mahalanobis |13.2948.5871.04 84.02| 8.93|34.4952.8267.86
Identity 4.43|16.9327.0642.56| 1.41| 7.42|12.6921.43
ITML [24] 0.95| 8.23|18.20 32.28| 3.67|11.9420.3930.08
LMNN [23] 18.0459.3478.1689.72| 8.08|34.4(051.6(66.82

two images from different persons form a negative pair. lt#sting phase, we used
the single-shot testing where one image per person was magdelected to form the
gallery set and the remaining images were used to form theeset.

We used the cumulative matching curve (CMC) as the evaluatietric in our
experiments, where a match is found at the tofanks. The paramete¢sanda were
empirically set td0% and 0.9, respectively.

Comparison with Existing Metric Learning Algorithms: Table 1 tabulates the
matching rates of different metric learning methods, whittludes LMNN, ITM-

L, KISSME and RS-KISSME, as well as the widely used Mahalahalnd Identity
(Euclidean) distance metrics on the VIPeR dataset. We sdeth proposed RBML
method consistently outperforms all metric learning mdthwith as high as 5% and
2% Rank-1 accuracy at= 316 andp = 100, respectively. Fig. 4 shows the matching
examples of our RBML method on the VIPeR dataset.

Comparison with State-of-the-Art Person Re-identification Methods: We also
compared our RBML with the state-of-the-art person reifieation methods on the
VIPeR dataset. Tables 2 and 3 tabulate the matching acesracithis dataset wheris
set to 316 and 100, respectively. We see that RBML outpesaihihe state-of-the-art
person re-identification across several ranks. Partigyldie rank-1 matching rate of
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Fig. 4. Examples of person re-identification on the VIPeR datasieigusur proposed RBML.
The first column indicates the probe images, the middle aneas the top-15 ranked results
from the gallery image with a highlighted red box for the eatrmatch with our method, and the
last column shows the true match.

Table 2. Matching rates (%) of our method and the state-of-the-agquere-identification meth-
ods on the VIPeR dataset whgiis set as 316.

Method r=1 | r=5 [r=10| r=20
RBML 27.5358.2371.5284.65
eSDC [10] |26.7450.7062.3776.36
eLDFV [28]|22.3447.0067.0471.00
eBiCov [27]20.6642.0056.1868.00
CPS[42] |21.8444.0057.2171.00
SDALF [1] |19.8738.8949.3765.73
ELF[9] 12.0031.0041.0058.00
PRDC [3] |15.6638.4253.8670.09
aPRDC [43]16.1437.7250.9865.95
PCCA[33] |19.2748.8964.9180.28

our method improves the current state-of-the-art methgds &% and 2.1% whep is
set as 316 an 100, respectively.

Parameter Analysis:We also investigated the individual contributions of ouNRB
L model. We define three variations of our method to studyr tthiéfierent importance:
1) RBMLL1: regularizing the noise space only; 2) RBML2: reyiding without the
suppression in the principal space; and 3) RBML3: regulagizthe noise and princi-
pal space without continuity. RBML1 was implemented by tagaing the noise space
with the 1/ f function only and the principal space is not regularizedMRR ignored
the suppression in the principal space, which is equivatesetting the parameteras
1in RBML. RBML3 performed the same modeling method as RBMikioth the prin-
cipal and noise spaces but discarded the continuity pagariiein the principal space.
Fig. 5 shows the matching rates of different types of regzééion model in our RBML
on the VIPeR dataset. It can be seen that removing a portioarahodel degrades the
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Fig. 5. CMC curves for different types of regularization methodsum model ap = 100 on the
VIPeR dataset.

Table 3.Matching rates (%) of our method and the state-of-the-agqrere-identification meth-
ods on the VIPeR dataset whgiis set as 100.

Method r=1| r=5 | r=10|r=20
RBML 13.1634.1246.7160.62
Hirzer's [35](11.00 - [38.0052.0Q
PRDC [3] |9.12|24.1934.4048.55
PCCA[33] | 9.27|24.8937.4352.89
MCC [25] |5.00(16.3225.9239.64

whole re-identification performance. Moreover, the regaétion in the noise space is
the most important in our method and the suppression in tineipal space also con-
tributes to the overall performance. Lastly, the contiyoitthe eigen-spectrum is also
useful to improve the re-identification result.

We also investigated the performance of our method versnsngavalues ofa.
Fig. 6 shows the CMC curves versus varying valuea.dofVe see that the performance
of our method degrades heavily wheris smaller than 0.9.

Computational Time: We investigated the computational time of different method
on the VIPeR dataset. Our hardware configuration compriszd-&Hz CPU and a
8GB RAM. Table 4 shows the average training time of differaethods on the VIPeR
dataset when the number pfis set as 316. We see that our RBML method is more
efficient than other popular metric learning methods sudi &4 and LMNN, and as
efficient as KISSME. That is because our regularization aip@n doesn’t require any
complex optimization and iteration.

Comparison with Other Regularization Methods: We also compared our method
with other regularization models such as smoothing andhkhge. For smoothing reg-
ularization, the noise space of the eigen-spectrum of thar@nce matrix is defined
by a constantj = ﬁ Zf:cH A¢. The shrinkage regularization model [44] regulates
the model asX’ = (1 — )X + y7I, wherey is the shrinkage parameter which ranges
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Fig. 6. CMC curves of our method versus varying valuesGit p = 316 on the VIPeR dataset.

Table 4. Average training time (seconds) of different metric leaghimethods on the VIPeR
dataset.

Method Time)
RBML 0.002(
KISSME 0.0006
RS-KISSME 0.002(
Mahalanobis 0.0004
Identity 0.000001
ITML 6.5100
LMNN 10.220(

fromOto 1, andr = (1/d)tr(X). Table 5 shows the matching rates of different regular-
ization methods on the VIPeR dataset. As shown in the tablemethod outperforms
the smoothing and shrinkage regularization techniquearging sizes of training set.
This indicates that our method is the most effective in eatiing the covariance matrix
correctly.

Performance of Different Sizes of Training Set\We investigated the performance
of our method with varying sizes of training set. As shown ablgé 6, our method
outperforms other metric learning methods at differerining sizes, especially when
the size of training set is small.

Table 5. Matching rates (%) of different regularization methods loa VIPeR dataset.

Training Size p =316 p =100
Rank 1 |5(10{20( 1|5 |10]|20
RBML 27.5357.673.386.413.533.645.7,60.0

Smoothing | 21.8|51.966.1{77.2/ 9.9 |26.538.052.4
Shrinkage | 26.3|55.970.384.7/11.1{30.341.2/54.2
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Table 6. Rank 1 matching rates (%) at varyipgn the VIPeR dataset.

Method p=50Qp=30Qp=20Qqp=100Q
RBML 43.2| 28.3| 19.2| 13.6
KISSME 40.9| 23.2| 15.1| 1.3
RSKISSME| 41.7 | 24.4| 18.1| 10.9
Mahalanobis 20.4 | 13.3| 3.9 | 3.5

Fig. 7. Sample images of the ETHZ dataset. Each column show thenatighage of the same
person with different pose captured from a moving camera.

3.3 Evaluation on the ETHZ dataset

The ETHZ dataset [29] consists of 8555 images of 146 persbms.images are ob-
tained from 3 video sequences captured from a moving carBeree the persons are
captured in one single camera, the pose and viewpoint i@r&in this dataset are
smaller than those in the VIPeR dataset. However, thereaage variations in illu-
mination and occlusions in this dataset. Fig. 7 shows sommples from the ETHZ
dataset. We randomly selecteg@ersons and for each person, we also randomly choose
6 images for training. In the testing phase, we also usedifigdesshot testing where
one image per person was randomly selected to form the gaktrand the remaining

Table 7. Matching rates (%) of different metric learning methods lom ETHZ dataset.

Method p="76 p =26
Rank 1|5|10|20 1|5|10|20
RBML 71.6589.0094.3997.7462.3(082.4688.2393.79

KISSME [5] 70.9387.11{93.5297.31/42.6772.6282.85 92.1
RS-KISSME [4]70.4788.57193.81197.3460.1(79.4086.4392.57
Mahalanobis |71.2888.3894.3397.4762.4279.4286.3193.35
Identity 56.2979.4888.1893.8751.2472.0780.6988.58
ITML [24] 43.9270.8982.0999.3153.9275.6384.4591.97
LMNN [23] 65.7685.7892.2396.2260.3280.0187.2(093.02
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Fig. 9. Sample images of the i-LIDS MCTS dataset. Each column shewtiginal image of the
same person captured from different cameras.

images were used to form the probe set. Table 7 shows the imgiteties of different
metric learning methods on the ETHZ dataset. As can be showrRRBML achieves
comparable results with existing metric learning wheis set to 76, and outperforms
other methods whep is set to 26. Fig. 8 shows the matching examples of our RBML
method on the ETHZ dataset.

3.4 Evaluation on the i-LIDS dataset

The i-LIDS Multiple-Camera Tracking Scenario (MCTS) d&tHg 1] contains 476 im-
ages from 119 persons, where each person has an averageagjeksirnt his dataset was
captured at a busy airport arrival hall by using multiple fowerlapping cameras. It is
one of the more difficult datasets for person re-identifaratiecause there are heavy
occlusions caused by the busy crowd and large illuminati@hgose variations caused
by different camera views. Fig. 9 shows some samples in ttasetla We randomly se-
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Fig. 10.Examples of person re-identification on the i-LIDS datasatgiour proposed RBML.

Table 8. Matching rates (%) of different metric learning methods loaitLIDS dataset.

Training Size p =289 p =239
Rank 1] 5]10]20] 1 [5(]10]20
RBML 32.7863.0781.2594.1520.2444.0155.5872.27

KISSME [5] 31.2457.5475.9192.8410.7226.9537.1051.79
RS-KISSME [4]30.5861.9380.1194.1518.5139.8353.4669.97
Mahalanobis |29.4450.3768.1389.7612.7729.8641.1153.91
Identity 18.7346.6464.7689.4213.6930.6044.7958.99
ITML [24] 6.63|25.1548.1781.14 6.07|18.4229.2549.58
LMNN [23] 23.6357.1876.1292.2817.7938.1951.1(065.45

lectedp persons for training and used the single-shot testing ®rdimaining subjects.
Table 8 shows the matching rates of different metric leaymiethods on the i-LIDS M-
CTS dataset. We see that our RBML outperforms other metiinlag methods. Fig. 10
shows the matching examples of our RBML method on the i-LIRf&set.

3.5 Discussion
The above experimental results suggest the following twseokations:

1. RBML consistently outperforms the other metric learnimgthods, especially when
the size of the training set is relatively small. That is hessathe noise space is
much larger when the size of the training set is small, andegularization model
plays an important role for such scenarios.

2. Each individual part of our regularization model conités to the improvement of
the identification performance. Moreover, our method aistdietter performance
than other existing regularization methods. This is beedbe RBML estimates
the eigen-spectrum in a parametric manner so that a staj@e-spectrum can be
obtained.
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4 Conclusion

In this paper, we have proposed a regularized Bayesianare#ining (RBML) for
person re-identification. The proposed method learns a Mabhbis distance metric by
measuring the probability ratio between similar and didsinpairs modeled with a
Bayesian model, where the covariance matrices are regethin a parametric manner
so thatthey are well-estimated. Experimental results metvidely used re-identification
datasets have shown the the efficacy of the proposed method.
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