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Abstract. Person re-identification across disjoint cameras has attracted increas-
ing interest in computer vision due to its wide potential applications in visual
surveillance. In this paper, we propose a new regularized Bayesian metric learn-
ing (RBML) method for person re-identification. While numerous metric learning
methods have been proposed for person re-identification in recent years, most of
them suffer from the small sample size (SSS) problem becausethere are not e-
nough training samples in most practical person re-identification systems, so that
the within-class and between-class variations can be well estimated to learn the
distance metric. To address this, we propose a RBML method tomodel and regu-
late the eigen-spectrums of these two covariance matrices in a parametric manner,
so that discriminative information can be better exploited. Experimental results
on three widely used datasets demonstrate the advantage of our proposed RBML
over the state-of-the-art person re-identification methods.
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Person re-identification aims to match and recognize persons who have been ob-
served over different disjoint cameras, and it has many potential applications such as
information retrieval and visual surveillance. Over the past decade, many person re-
identification methods have been proposed in the literature, and they can be mainly
classified into two categories: feature-based [1,2] and model-based [3–5]. Feature-based
approach aims to extract robust and discriminative features to characterize the appear-
ance of human body images [1, 2, 6–10], and model-based approach learns a classifier
or ranker to recognize the query body image.

Recent years have witnessed that metric learning has been one of most popular
methods in person re-identification [11–22] . Metric learning aims to learn a Maha-
lanobis distance metric to transform samples from the original space to another fea-
ture space by exploiting the between-class and within-class variations. Representative
metric learning algorithms include large margin nearest neighbor (LMNN) [23], infor-
mation theoretic metric learning (ITML) [24], and neighborhood component analysis
(NCA) [25]. The objective of metric learning is to learn a discriminative similarity
to better measure the similarity of human body images by making use of some pri-
or knowledge. Fig. 1 illustrates an example to show the advantage of metric learning
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(a) Before metric learning.
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(b) After metric learning.

Fig. 1.Similarity distribution over 3160 positive and 3160 randomly sampled negative pairs from
the VIPeR dataset. (a) The original distribution in the Euclidean space. (b) The new distribu-
tion in the learned metric space. The histograms with the redcolor and the blue color represent
the matched (same person) and mismatched (different person) image pairs, respectively. Before
metric learning, the similarity of matched and mismatched pairs overlaps heavily, which is more
challenging for re-identification. However, these two similarity distribution histograms become
more separate in the learned distance metric, so that more discriminative information is exploited.

for person re-identification. While metric learning methods have shown promising per-
formance in person re-identification, most of them suffer from the small sample size
(SSS) problem because there are usually not enough trainingsamples to estimate the
within-class and between-class variations.

In this paper, we propose a new regularized Bayesian metric learning (RBML)
method for person re-identification. Our method models the difference of each pos-
itive pair and that of each negative pair as a Gaussian distribution model under the
Bayesian framework, and optimizes their probability ratioto learn a discriminative dis-
tance metric. To better estimate the intra-class and inter-class variations when there are
small number of training samples, we decompose the eigen-spectrum of each covari-
ance matrix into two subspaces and regularize them in a parametric manner. By doing
so, the learned distance metric can extract more relevant information. Our method is e-
valuated on three widely used person re-identification datasets and experimental results
demonstrate the efficacy of the proposed method.

1 Related Work

Person Re-Identification:Existing person re-identification methods can be categorized
into two classes: feature-based and model-based. Feature-based methods extract visual
signatures to differentiate different persons. For example, Farenzenaet al. [1] devel-
oped a symmetry driven accumulation of local feature (SDALF) for body appearance
modeling. Junglinget al. [26] designed a codebook learning approach to cluster local
features for implicit body shape matching. Maet al. [27] developed a BiCov descriptor
which combines biologically-inspired features and covariance features for human body
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representation. Maet al. [28] used local descriptors from pixel intensities and encoded
them into higher-order Fisher vectors for feature representation. Grayet al. [9] select-
ed a subset of color and texture features for person body representation. Schwartzet
al. [29] performed partial least squares (PLS) to adaptively weight different local fea-
tures for body representation. Model-based methods learn aclassification or ranking
model to recognize the query body image from the gallery set.Representative methods
include support vector machine [30], transfer learning [31], manifold ranking [32] and
metric learning [5, 25, 33, 34]. In this work, we contribute to the second category and
propose a new metric learning approach for person re-identification.

Metric Learning: Metric learning aims to learn a Mahalanobis distance metricto
transform samples to another feature space by exploiting the between-class and within-
class variations. In recent years, metric learning has beenwidely used in person re-
identification and has also achieved the state-of-the-art performance. For example, Hirz-
er et al. [35] proposed a relaxed pairwise metric leaning approach. Kostingeret al. [5]
learned a Mahalanobis distance metric based on the statistical inference over the ratio
of similar and similar pairs in the training set. Zhenget al. [36] proposed a relative dis-
tance comparison (PRDC) metric learning to maximize the probability of a positive pair
having a smaller distance than a negative pair. However, there are still two shortcom-
ings among these methods: 1) most of them rely on a large number of training samples
and may not perform well when the training set is small; 2) most of them perform an
iterative optimization procedure for training, which increases the computational com-
plexity. To address this, we propose a simple yet effective metric learning method for
person re-identification, where the difference of each pairof positive and negative pairs
are represented as a Bayesian model, respectively, and the ratio of positive pairs over
negative pairs is minimized. Since the number of training samples is usually small, we
regularize the covariance matrices in a parametric manner to make them well-estimated
and stable. By doing so, relevant information can be extracted from the learned distance
metric.

2 Regularized Bayesian Metric Learning

Let x ∈ Rd be the feature representation of a body image,S andD two sets of similar
and dissimilar pairs, where(xi, xj) ∈ S is a feature pair from the same person and
(xi, xj) ∈ D is a pair from different persons. We compute the following ratio:

δ(xi, xj) = log

(

Pr[(xi, xj) ∈ D]

Pr[(xi, xj) ∈ S]

)

(1)

wherePr[·] is a probability distribution function to measure the likelihood of whether
(xi, xj) is from the same person. Specifically,δ(xi, xj) is high if they are from different
persons, and low from the same person. We model the probability distribution function
as a single Gaussian distribution of (xij = xi − xj) with zero mean as follows:

Pr[·] =
1

√

2π | Σ |
exp

(

−
1

2
xT
ijΣ

−1xij

)

(2)
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Then, (1) can be simplified as follows by removing the log operator and the constant
term:

δ(xi, xj) = xT
ijΣ

−1
1 xij + log(|Σ1|)− xT

ijΣ
−1
0 xij − log(|Σ0|)

= xT
ij(Σ

−1
1 −Σ−1

0 )xij (3)

where

Σ1 =
∑

(xi,xj)∈S

(xi − xj)(xi − xj)
T (4)

Σ0 =
∑

(xi,xj)∈D

(xi − xj)(xi − xj)
T (5)

These two covariance matrices cannot be well estimated if there are not enough
training samples. To address this, we regulate each of them.We first obtain the eigen-
spectrum of each covariance matrix as follows:

Σ = ΦΛΦT (6)

whereΛ = diag(λ1, λ2, · · · , λd) denotes the eigenvalues ofΣ, which is sorted in a
descending order, andΦ = [φ1, φ2, · · · , φd] is the corresponding eigenvector.

The eigen-spectrum obtained with small number of training samples is usually bi-
ased because the energy of the spectrum is concentrated at a few principal components
corresponding to the largest eigenvalues and those corresponding to smaller eigenval-
ues are unreliable. To better estimate the eigen-spectrum in the whole space, we divide
the original eigen-spectrum ofΛ into two subspaces, called principal (P) and noise (N)
space and regulate each of them separately:

λt ∈

{

P, t ≤ c

N, c+ 1 ≤ t ≤ d
(7)

wherec is a pre-specified energy percentage parameter which is computed as follows:

c = min{c|(

c
∑

t=1

λt/

d
∑

t=1

λt) ≥ ζ} (8)

To better estimate the eigen-spectrum, we present a new regularization model which
reduces the effect of larger eigenvalues inP and enhances the effect of smaller eigen-
values inN as follows:

λ′
t =











(

a

t+ b

)α

+K for t ≤ c

a

t+ b
for c+ 1 < t < d

(9)

In (9), we regularize the whole eigen-spectrum in a parametric manner by using
the 1/f function because this function fits well to the decaying nature of the eigen-
spectrum [37, 38]. Since the eigenvalues inP are much larger than those inN , we
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Fig. 2. (a) The basic idea of our proposed RBML, where the eigen-spectrum of the covariance
matrix is decomposed into two subspaces and regularized with different models. (b) Zooming in
of the original and modeled noise spaces.

further shrink and suppress them by using an exponential function using parameter
α, where0 < α < 1. The parameterK in (9) is used to make the eigen-spectrum
continuous in the whole space so that a smooth eigen-spectrum can be obtained in the
whole space, where

K =
a

c+ b
−

(

a

c+ b

)α

(10)

Let λ1 = a
1+b

andλc =
a

c+b
. The coefficientsa andb are computed as:

a =
λ1λc(c− 1)

λ1 − λc

(11)

b =
cλc − λ1

λ1 − λc

(12)

Having obtained the modeled eigen-spectrum, we compute themodeled covariance
matrix as follows:

Σ′ = ΦΛ′ΦT (13)

whereΛ′ = diag(λ′
1, λ

′
2, · · · , λ

′
d) are the eigenvalues which are sorted in a decreasing

order. Now, the Mahalanobis distance metric in (3) can be computed as follows:

δ(xij) = xT
ij(Σ

′−1
1 −Σ′−1

0 )xij

= (xi − xj)
T
M(xi − xj) (14)

whereM , Σ′−1
1 −Σ′−1

0 .
Fig. 2 show the estimated and original eigen-spectrum of onecovariance matrix,

and we see that effect of the eigenvalues in theN space is enhanced in the modeled
space.Algorithm 1 summarizes the proposed RBML method.
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Input : Positive and negative training sample pairs and parametersα andζ.
Output : Mahalanobis distance metricM .
Step 1 (Initialization):

1.1. Compute covariance matrices for similar and dissimilar pairs, respectively.
Step 2 (Regularization and Modeling):

For each covariance matrix, repeat
2.1. Perform eigendecomposition using (6).
2.2. Compute for parametricc using (8).
2.3. Estimate the new eigenspectrum using (9).
2.4. Compute the new covariance using (13).

Step 3 (Output):
Output the matrixM using (14).

Algorithm 1: RBML

3 Experiments

We evaluate the proposed RBML method on three widely used person re-identification
datasets, namely the VIPeR [39], ETHZ [40] and i-LIDS [41] databases. The following
describe the details of our experiments and results.

3.1 Settings

For each person image, we extracted a mixture of color and texture histogram fea-
tures by following the detailed settings in [3, 9]. Each person image is represented by
a 2784-dimensional feature vector. Specifically, we divided the person image into six
horizontal stripes. For each stripe, the RGB, YCbCr, HSV color features and texture
features (Schmid and Gabor) were extracted and representedas a histogram feature.
We applied PCA to project the feature representation into a 100-dimensional feature
vector to remove the redundancy of the high-dimensional feature space.

Having extracted the feature of each image, we learned a discriminative distance
metric by using the proposed RBML method. Finally, the nearest neighbor is used for
ranking.

3.2 Evaluation on the VIPeR dataset

The VIPeR dataset [39] consists of 632 persons and each person has two images cap-
tured from two different cameras in an outdoor environment.Most image pairs in this
dataset have a viewpoint change of 90 degrees, where one is from the front/back view
and the other is from the side view. There are large variations of illumination, viewpoint
and pose in these captured images. Fig. 3 shows some sample images in the VIPeR
dataset.

We followed the experimental settings in [3, 9]. In our experiments, we randomly
selectedp persons for training and the remaining persons were used fortesting. We
repeated this selection 10 times and took the average as the final re-identification accu-
racy. In the training phase, two images from the same person form a positive pair, and
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Fig. 3. Sample images of the VIPeR dataset. The images from each column are body images
captured from different cameras and belong to the same person.

Table 1.Matching rates (%) of different metric learning methods on the VIPeR dataset.

Method p = 316 p = 100

Rank 1 10 25 50 1 10 25 50

RBML 27.2272.7889.0895.89 13.0647.4664.9479.70
KISSME [5] 22.1566.7782.91 92.41 1.41 7.14 12.7821.24
RS-KISSME [4]22.3167.4186.23 94.62 10.7140.9859.3076.79
Mahalanobis 13.2948.5871.04 84.02 8.93 34.4952.8267.86
Identity 4.43 16.9327.06 42.56 1.41 7.42 12.6921.43
ITML [24] 0.95 8.23 18.20 32.28 3.67 11.9420.3930.08
LMNN [23] 18.0459.3478.16 89.72 8.08 34.4051.6066.82

two images from different persons form a negative pair. In the testing phase, we used
the single-shot testing where one image per person was randomly selected to form the
gallery set and the remaining images were used to form the probe set.

We used the cumulative matching curve (CMC) as the evaluation metric in our
experiments, where a match is found at the top-n ranks. The parametersζ andα were
empirically set to90% and 0.9, respectively.

Comparison with Existing Metric Learning Algorithms: Table 1 tabulates the
matching rates of different metric learning methods, whichincludes LMNN, ITM-
L, KISSME and RS-KISSME, as well as the widely used Mahalanobis and Identity
(Euclidean) distance metrics on the VIPeR dataset. We see that our proposed RBML
method consistently outperforms all metric learning methods with as high as 5% and
2% Rank-1 accuracy atp = 316 andp = 100, respectively. Fig. 4 shows the matching
examples of our RBML method on the VIPeR dataset.

Comparison with State-of-the-Art Person Re-identification Methods: We also
compared our RBML with the state-of-the-art person re-identification methods on the
VIPeR dataset. Tables 2 and 3 tabulate the matching accuracies on this dataset whenp is
set to 316 and 100, respectively. We see that RBML outperforms all the state-of-the-art
person re-identification across several ranks. Particularly, the rank-1 matching rate of
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True 
Match

Probe Rank 15 Gallery Images

Fig. 4. Examples of person re-identification on the VIPeR dataset using our proposed RBML.
The first column indicates the probe images, the middle area shows the top-15 ranked results
from the gallery image with a highlighted red box for the correct match with our method, and the
last column shows the true match.

Table 2.Matching rates (%) of our method and the state-of-the-art person re-identification meth-
ods on the VIPeR dataset whenp is set as 316.

Method r=1 r=5 r=10 r=20
RBML 27.5358.2371.5284.65
eSDC [10] 26.7450.7062.3776.36
eLDFV [28] 22.3447.0067.0471.00
eBiCov [27] 20.6642.0056.1868.00
CPS [42] 21.8444.0057.2171.00
SDALF [1] 19.8738.8949.3765.73
ELF [9] 12.0031.0041.0058.00
PRDC [3] 15.6638.4253.8670.09
aPRDC [43]16.1437.7250.9865.95
PCCA [33] 19.2748.8964.9180.28

our method improves the current state-of-the-art methods by 0.8% and 2.1% whenp is
set as 316 an 100, respectively.

Parameter Analysis:We also investigated the individual contributions of our RBM-
L model. We define three variations of our method to study their different importance:
1) RBML1: regularizing the noise space only; 2) RBML2: regularizing without the
suppression in the principal space; and 3) RBML3: regularizing the noise and princi-
pal space without continuity. RBML1 was implemented by regularizing the noise space
with the1/f function only and the principal space is not regularized. RBML2 ignored
the suppression in the principal space, which is equivalentto setting the parameterα as
1 in RBML. RBML3 performed the same modeling method as RBML for both the prin-
cipal and noise spaces but discarded the continuity parameterK in the principal space.
Fig. 5 shows the matching rates of different types of regularization model in our RBML
on the VIPeR dataset. It can be seen that removing a portion ofour model degrades the
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Fig. 5. CMC curves for different types of regularization methods inour model atp = 100 on the
VIPeR dataset.

Table 3.Matching rates (%) of our method and the state-of-the-art person re-identification meth-
ods on the VIPeR dataset whenp is set as 100.

Method r=1 r=5 r=10 r=20
RBML 13.1634.1246.7160.62
Hirzer’s [35] 11.00 - 38.0052.00
PRDC [3] 9.12 24.1934.4048.55
PCCA [33] 9.27 24.8937.4352.89
MCC [25] 5.00 16.3225.9239.64

whole re-identification performance. Moreover, the regularization in the noise space is
the most important in our method and the suppression in the principal space also con-
tributes to the overall performance. Lastly, the continuity of the eigen-spectrum is also
useful to improve the re-identification result.

We also investigated the performance of our method versus varying values ofα.
Fig. 6 shows the CMC curves versus varying values ofα. We see that the performance
of our method degrades heavily whenα is smaller than 0.9.

Computational Time: We investigated the computational time of different methods
on the VIPeR dataset. Our hardware configuration comprises a2.4-GHz CPU and a
8GB RAM. Table 4 shows the average training time of differentmethods on the VIPeR
dataset when the number ofp is set as 316. We see that our RBML method is more
efficient than other popular metric learning methods such asITML and LMNN, and as
efficient as KISSME. That is because our regularization operation doesn’t require any
complex optimization and iteration.

Comparison with Other Regularization Methods: We also compared our method
with other regularization models such as smoothing and shrinkage. For smoothing reg-
ularization, the noise space of the eigen-spectrum of the covariance matrix is defined
by a constant,β = 1

d−c

∑d

t=c+1 λt. The shrinkage regularization model [44] regulates
the model as:Σ′ = (1− γ)Σ + γτI, whereγ is the shrinkage parameter which ranges
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Fig. 6.CMC curves of our method versus varying values ofα atp = 316 on the VIPeR dataset.

Table 4. Average training time (seconds) of different metric learning methods on the VIPeR
dataset.

Method Time
RBML 0.0020
KISSME 0.0006
RS-KISSME 0.0020
Mahalanobis 0.0002
Identity 0.000001
ITML 6.5100
LMNN 10.2200

from 0 to 1, andτ = (1/d)tr(Σ). Table 5 shows the matching rates of different regular-
ization methods on the VIPeR dataset. As shown in the table, our method outperforms
the smoothing and shrinkage regularization techniques at varying sizes of training set.
This indicates that our method is the most effective in estimating the covariance matrix
correctly.

Performance of Different Sizes of Training Set:We investigated the performance
of our method with varying sizes of training set. As shown in Table 6, our method
outperforms other metric learning methods at different training sizes, especially when
the size of training set is small.

Table 5.Matching rates (%) of different regularization methods on the VIPeR dataset.

Training Size p = 316 p = 100

Rank 1 5 10 20 1 5 10 20
RBML 27.5357.673.386.413.533.645.760.0
Smoothing 21.8 51.966.177.2 9.9 26.538.052.4
Shrinkage 26.3 55.970.384.711.130.341.254.2
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Table 6.Rank 1 matching rates (%) at varyingp on the VIPeR dataset.

Method p=500p=300p=200p=100
RBML 43.2 28.3 19.2 13.6
KISSME 40.9 23.2 15.1 1.3
RSKISSME 41.7 24.4 18.1 10.9
Mahalanobis 20.4 13.3 3.9 3.5

Fig. 7. Sample images of the ETHZ dataset. Each column show the original image of the same
person with different pose captured from a moving camera.

3.3 Evaluation on the ETHZ dataset

The ETHZ dataset [29] consists of 8555 images of 146 persons.The images are ob-
tained from 3 video sequences captured from a moving camera.Since the persons are
captured in one single camera, the pose and viewpoint variations in this dataset are
smaller than those in the VIPeR dataset. However, there are larger variations in illu-
mination and occlusions in this dataset. Fig. 7 shows some samples from the ETHZ
dataset. We randomly selectedp persons and for each person, we also randomly choose
6 images for training. In the testing phase, we also used the single-shot testing where
one image per person was randomly selected to form the gallery set and the remaining

Table 7.Matching rates (%) of different metric learning methods on the ETHZ dataset.

Method p = 76 p = 26

Rank 1 5 10 20 1 5 10 20

RBML 71.6589.0094.3997.7462.3082.4688.2393.79
KISSME [5] 70.9387.1193.5297.3142.6772.6282.85 92.1
RS-KISSME [4]70.4788.5793.8197.3460.1079.4086.4392.57
Mahalanobis 71.2888.3894.3397.4762.4279.4286.3193.35
Identity 56.2979.4888.1893.8751.2472.0780.6988.58
ITML [24] 43.9270.8582.0999.3153.9275.6384.4591.97
LMNN [23] 65.7685.7892.2396.2260.3280.0187.2093.02
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Fig. 8. Examples of person re-identification on the ETHZ dataset using our proposed RBML.

Fig. 9.Sample images of the i-LIDS MCTS dataset. Each column show the original image of the
same person captured from different cameras.

images were used to form the probe set. Table 7 shows the matching rates of different
metric learning methods on the ETHZ dataset. As can be shown,our RBML achieves
comparable results with existing metric learning whenp is set to 76, and outperforms
other methods whenp is set to 26. Fig. 8 shows the matching examples of our RBML
method on the ETHZ dataset.

3.4 Evaluation on the i-LIDS dataset

The i-LIDS Multiple-Camera Tracking Scenario (MCTS) dataset [41] contains 476 im-
ages from 119 persons, where each person has an average of 4 images. This dataset was
captured at a busy airport arrival hall by using multiple non-overlapping cameras. It is
one of the more difficult datasets for person re-identification because there are heavy
occlusions caused by the busy crowd and large illumination and pose variations caused
by different camera views. Fig. 9 shows some samples in the dataset. We randomly se-
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Fig. 10.Examples of person re-identification on the i-LIDS dataset using our proposed RBML.

Table 8.Matching rates (%) of different metric learning methods on the i-LIDS dataset.

Training Size p = 89 p = 39

Rank 1 5 10 20 1 5 10 20

RBML 32.7863.0781.2594.1520.2444.0755.5872.27
KISSME [5] 31.2457.5475.9192.8410.7226.9537.1051.79
RS-KISSME [4]30.5861.9380.1194.1518.5139.8353.4669.97
Mahalanobis 29.4450.3768.1389.7612.7729.8641.1153.91
Identity 18.7346.6464.7689.4213.6930.6044.7958.99
ITML [24] 6.63 25.1548.1781.14 6.07 18.4229.2549.58
LMNN [23] 23.6357.1876.1292.2817.7938.1951.1065.45

lectedp persons for training and used the single-shot testing for the remaining subjects.
Table 8 shows the matching rates of different metric learning methods on the i-LIDS M-
CTS dataset. We see that our RBML outperforms other metric learning methods. Fig. 10
shows the matching examples of our RBML method on the i-LIDS dataset.

3.5 Discussion

The above experimental results suggest the following two observations:

1. RBML consistently outperforms the other metric learningmethods, especially when
the size of the training set is relatively small. That is because the noise space is
much larger when the size of the training set is small, and ourregularization model
plays an important role for such scenarios.

2. Each individual part of our regularization model contributes to the improvement of
the identification performance. Moreover, our method obtains better performance
than other existing regularization methods. This is because the RBML estimates
the eigen-spectrum in a parametric manner so that a stable eigen-spectrum can be
obtained.



14 Venice Erin Liong, Jiwen Lu, and Yongxin Ge

4 Conclusion

In this paper, we have proposed a regularized Bayesian metric learning (RBML) for
person re-identification. The proposed method learns a Mahalanobis distance metric by
measuring the probability ratio between similar and dissimilar pairs modeled with a
Bayesian model, where the covariance matrices are regularized in a parametric manner
so that they are well-estimated. Experimental results on three widely used re-identification
datasets have shown the the efficacy of the proposed method.
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